If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+2t-32=0
a = 5; b = 2; c = -32;
Δ = b2-4ac
Δ = 22-4·5·(-32)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{161}}{2*5}=\frac{-2-2\sqrt{161}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{161}}{2*5}=\frac{-2+2\sqrt{161}}{10} $
| 10(2x-4)+5(x+5)=-5(-x-9) | | -3x+9=33, | | -6=-4c-6c | | 2*x^2-3=-5x | | (-2/3)(9x=15)-2x=34 | | x=2x=4x=28 | | -4x^2-15+4=0 | | 3x+42=8x-33 | | -9x+2/5=1/15 | | 3{x+1}+6=33 | | 2x−6=(4x−6) | | 3z/7+1=5 | | x3+3x-2=0 | | 0=10t-6t | | A-3b=6 | | (7-y)=12 | | 7*3^5x=77 | | 5x-1/4=1/16 | | 2x×x-3=-5x | | 3u+1=25u-2 | | 2x2-3=-5x | | n-4=7/2 | | x×5+29=84 | | 0.3x^2+0.6x-1=0 | | ×x5+29=84 | | 2)-4(-1-3k)=4-4k | | 28=y*4 | | 0.3x^2+0.6x+1=0 | | 3m-6=14-2m | | 4-x=-3x+5-12 | | 7n-18=4+2(3n-8) | | -3−8n=-7n |